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Why discrete geometry?

® Recent history: Dissatisfaction with deep learning, only “curve fitting”,
alternatives via causal graphical models [Peal9]

® | ess recent history: graphical models among first non-rules based Al approaches
[Dar09]

e Geometrical formulations of statistical objects, e.g. graphical models and
probability polytopes

For today ...
® Graphical models
® Probability polytopes

® Geometry of Simpson's Paradox



Simpson paradox preview

Directed graphical model: university admission gender bias

Men Women
Applicants | Admitted Applicants  Admitted
Total 8442 44% 4321

35%




Directed graphical model: university admission gender bias

Simpson paradox preview

Men ‘Women
Department = = -
A 825 62% 108 82%
B 560 63% 25 68%
c 325 37% 593 34%
D a7 33% 375 35%
E 191 28% 393 24%
F 373 6% 341 7%

Sources: [Wik] [BHO75]
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Directed graphical model: hit rate for insurance quotes
® product type: financial, liability, property
® days: number of days to generate quote
® rating: measure of premium paid expected claims
® hit: 0 if quote refused, 1 if accepted

rating




Undirected graphical model: credit default risk [FGMS12]
¢ Nodes take values 0 (healthy) or 1 (default)

® |ndustry nodes connect to other industry nodes

® Individual firm nodes connect only to corresponding industry node



Graph definitions

Definition

A graph is a pair of sets (V, E), where V is called the set of vertices (or nodes) and E
is called the set of edges, such that the set of edges corresponds injectively to pairs of
vertices.

Notes

e Typically ‘pairs of vertices' does not include self-pairs, but this can be relaxed,
leading to graphs with with loops.

® The injectivity requirement can also be relaxed, leading to multigraphs.



Graphical models

Definition
(Informal) A graphical model is a graph whose nodes represent variables and whose
edges represent direct statistical dependencies between the variables.

Why graphical models?
® For probability distributions admitting a graphical model representation, then
graph properties (d-separation) imply conditional independence relations.
e Conditional independence relations reduce the number of parameters required to
specify a probability distribution.
® Graphical models come in two flavors depending on their edges: directed (aka
Bayesian Networks) and undirected (aka random Markov fields).



Directed acyclic graphs

Definition
A graph G = (V, E) is a directed acyclic graph (denoted also DAG) if all edges have
an associated direction, and no edge path consistent with the directions forms a cycle.

If there is a directed path from X; to Xj, then X; is called a parent of X, and
Pa(X;) C V is the set of all parents of Xj.

Definition
If X =(X1,...,Xm) admits a DAG G, then X; is a DAG model if the distribution of
X decomposes according to G, i.e.

PX)= [ P(XiIPa(x:))

ie{1,....m}



Example: Karma and weight-lifting

Take K to be your Karma, H to be the hours you spend in the gym lifting weight each
day, and then W be the weight you can bench press on a given day. For simplicity, all
random variables are binary.

karma hours weight

= = O Rk
OO = = O
= = O R




Decomposition example: Karma and weight-lifting

Suppose X = (K, H, W) admits the graph

Then P(K,H, W) = P(K) P(H|K)P(W|H).

Definition
A DAG of the form above is called a chain.



Decomposition example: Karma and weight-lifting

Suppose X = (K, H, W) admits the graph

Then P(K,H, W) = P(K) P(H) P(W|K, H).

Definition
A DAG of the form above is called a collider at W.



Conditional independence
Recall that two random variables X, Y are independent if, for all x, y,
P(X=x,Y=y)=P(X=x)P(Y =y).
Definition
Let X = (X1,...,Xm) be a probability distribution, and let A, B, C be pair-wise
disjoint subsets of 1,..., m, and define X4 = (X;)ica. Then Xa, X5 are conditionally
depenedent given Xc if and only if

P(XA = Xa, XB = XB|XC = XC)
= P(Xa = xa|Xc = xc)P(Xg = xg| Xc = x¢)

for all xa, x5, xc.

For Xa, Xg conditionally independent given X¢, we write (Xa 1L Xg|Xc). See e.g.
[DSS08] for a precise formulation.



Conditional independence and d-separation teaser

First example of discrete geometry helping statistics: conditional independence in a
DAG model (X, G) can be detected in properties of G1. More precisely,

Theorem
If (X, G) is a DAG model, then d-separation implies conditional independence.

See e.g. [PGJ16], chapter 2.

1The required graph properties are combinatorial, but can also be understood geometrically, see e.g.
[DSSo08].



More definitions before d-separation

Figure: Chain

Figure: Collider at W, Fork at K



d-separation in DAGs
Definition
An undirected path p in a DAG G is blocked by a set of nodes S if and only if

1. p contains a chain of nodes X — Y — Z, or a fork X < Y — Z such that
Yes§, or

2. p contains a collider X — Y < Z such that Y ¢ S and no descendant of Y is in
S.

Definition
If a set of nodes S blocks every path between two nodes X and Y, then X and Y are

called d-separated conditional on S, and we write

(X L Y[S)e

By the d-separation teaser theorem, (X L Y|S)¢ implies conditional independence.



d-separation example: hit rate for insurance

All paths from product_type to hit are blocked by {days, rating}, hence
(product_type 1L hit|days, rating)¢.



Probability polytopes

Goal: Use geometric interpretation of multivariate discrete random variables to
generate interesting fake data with few(er) parameters.

Example: The family of all X ~ Bernoulli can be represented as

Al:{(Poapl)ZPiZO,Zpizl}g R?

Example: Consider the collider graph for Karma-influenced weight-lifting (K, H, W).
Then all possible conditional probability tables for (W|K, H) can be parametrized as

{(Pwik,p) * Pwik,h = O,ZPW“(,;, — 1 for (k,h) € {0,1}°} C R®

In general, the space of multivariate discrete random variable distributions is a
polytope, see e.g. [DSS08], Ch. 1.



H- and V-representations of polytopes

Definition
An H-polyhedron is an intersection of closed halfspaces, i.e. a set P C RY presented in
the form

P=P(Az)={x€R?: Ax < z} for some Ac R™ z ¢ R™.
If P is bounded (i.e. compact), then it is called a polytope.
Definition
(Informal) A V-polytope is the convex hull of a finite set of vertices conv(V) € RY.

See [Ziel2] for a precise definition.

(0.1)

Example: The V-representation for all Bernoulli distributions is



The main theorem of polytopes

Theorem
A subset P C RY is the convex hull of a finite point set (a V-polytope)

P = conv(V) for some V € R
if and only if it is a bounded intersection of halfspaces (an H-polytope)

P = P(A, z) for some Ac R™ z € R™

See [Ziel2] for a proof.



Applying the main theorem to conditional probability tables

For the Karma weight-lifting example, all conditional probability tables for (W|K, H)
that satisfy E(W|K = 0) = 0 (bad Karma, no weight) and E(W|H = 0) = 0.2 can be
written as an H — polytope as above with additional constraints

Z W Pw|o,n = 0
w,h

Z W Pw ko = 0.2
w,k

By converting this H-representation to a V-representation, we can generate random
conditional probability tables subject to expectation constrains.

For an example, see the implementation of ProbabilityPolytope of
https://munichpavel.github.io/fake-data-for-learning/.


https://munichpavel.github.io/fake-data-docs/html/_modules/fake_data_for_learning/utils.html#ProbabilityPolytope
https://munichpavel.github.io/fake-data-for-learning/

Geometry of Simpson’s Paradox

Motivating example and notation

From Primer on Causality by Pearl, Glymour, Jewell, table 1.1. is

Subpopulation

No Treatment

Treatment

Female
Male
Total

55 of 80 recover (69%)
234 of 270 recover (87%)
289 of 350 (83%))

192 of 263 recover (73%)
81 of 87 recover (93%)
273 of 350 (78%)

we consider the counts above as being derived from a space of counts along
dimensions (RECOVERED, GENDER, TREATED) of N? x N? x N

where

U = (ujjk)

ujx = counts of RECOVERED = i, GENDER = j, TREATED = k



http://bayes.cs.ucla.edu/PRIMER/primer-ch1.pdf

Geometry of Simpson's Parardox

Notation for counts, Il

tgog = Count of non-recovered females who received no treatment

u190 = Count of recovered females who received no treatment

ug10 = Count of non-recovered males who received no treatment

110 = Count of recovered males who received no treatment

ugo1 = Count of non-recovered females who received treatment

u191 = Count of recovered females who received treatment

tg11 = Count of non-recovered males who received treatment

u111 = Count of recovered males who received treatment

Subpopulation

No Treatment

Treatment

Female
Male

Total

u100 of uigo recover (ratio 4

U+00

10 of uy1p recover (ratio 411

up1g of uyyg recover (

Usio
Uil
Uito

)

u101 of uio1 recover (ratio
111 of w11 recover (ratio

M41 of uiiq recover (ratio

nio1 )
n

+01

Uil )

Ui11
Uil )
Uil




Geometry of Simpson’s Paradox

Converting counts ujj to probabilities pjj (exercise), have quadratic inequalities for

this Simpson's paradox example:

P101P+00 — P1ooP+o1 > 0
P111P+10 — P110P+11 > 0
P14+1P++0 — P1+0P++1 < 0
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