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Why causality matters
Because correlation is a proxy.
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Why causality matters

Because A / B testing is not a

lways possible.
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Simpson's paradox: cautionary tales

Simpson’s paradox: a phenomenon in probability and statistics in which a trend
appears disappears or reverses depending on grouping of data. [Wik], [PGJ16]

Example: University of California, Berkeley 1973 admission figures

Men Women

Applicants Admitted Applicants Admitted

Total 8442 44% 4321 35%
[FPPY8]
Men Women
Department

Admitted

A 825 62% 108 82%

B 560 63% 25 68%

c 325 37% 593 34%

D a7 33% 375 35%

E 191 28% 393 24%

F 373 6% 341 7%

[BHO75]



A brief, biased history of causality

Aristotle, 384 - 322 BC

Isaac Newton, 1643 - 1727 AD

David Hume, 1711 - 1776 AD

Francis Galton, 1822 - 1900 AD, Karl Pearson, 1857 - 1936 AD
Judea Pearl, b. 1936 AD



Counterfactuals and causality

Ideal: Intervention + Multiverse — Causality

Examples:
¢ Medical treatment (e.g. kidney stone treatment)
® Social outomes (e.g. university admissions)

® Business outcomes (e.g. click-through rate, hit rate)

In-practice:

e Correlation: approximate multiverse by comparing intervention at t to result at
t—1
® Random population: approximate multiverse by splitting sample well

® A / B testing: random populations A / B + intervention in one


https://en.wikipedia.org/wiki/Multiverse
https://en.wikipedia.org/wiki/Simpson%27s_paradox#Kidney_stone_treatment
https://en.wikipedia.org/wiki/Simpson%27s_paradox#UC_Berkeley_gender_bias
https://en.wikipedia.org/wiki/Click-through_rate

Counterfactual example: hit rate for insurance

Variables:
® producttype: Client line of business
® days: Number of days to generate quote
® rating: Binary indication of client risk

e hit: Binary, 1 for success (binding the quote), 0 for failure

Fake data:

product_type days rating hit

property 3 1 0
liability 1 0 0
financial 0 1 0
liability 3 0 O
liability 0 0 1




Counterfactual example: hit rate for insurance

Variables:
® producttype: Client line of business
e days: Number of days to generate quote
® rating: Binary indication of client risk
e hit: Binary, 1 for success (binding the quote), 0 for failure



Non-counterfactual approach: condition and query

Goal: estimate effect of days on hit.

Calculate
¢ P(hit = 1|days = 0) — P(hit = 1|days = 1),
e P(hit = 1|days = 1) — P(hit = 1|days = 2),

From exercise Jupyter notebook:
hit

days

0 0.532706
1 0.442064
2 0.330519
3 0.174006




The Structural Causal Model

The definitions in following slides are from [Pea07], [PGJ16].

Definition
A structural causal model M consists of two sets of variables U, V' and a set of
functions F, where

® (J are considered exogenous, or background variables,
® V/ are the causal variables, i.e. that can be manipulated, and

® F are the functions that represent the process of assigning values to elements of
V based on other values in U, V, e.g. v; = f(u,v).

We denote by G the graph induced on U, V' by the functions F, and call it the causal
graph of (U, V,F).

Hit rate example: U = {producttype, rating}, V = {days, hit}, F <> sample from
conditional probabilty tables in directed graphical model.



Formalizing interventions: the intuition of “do”

For business application, quantity of interest is not P(hit = 1|days = d), but
intervention
P(hit = 1|do(days = d))



Formalizing interventions: the intuition of “do”

For business application, quantity of interest is effect of intervention / counterfactual
Not P(hit = 1|days = d) but P(hit = 1|do(days = d))

G= G' = Gaays =



Formalizing interventions: the intuition of “do”
First, find quantities unchanged between G and G’ = Gqays

P (producttype = p,rating = r)

= Pg(producttype = p, rating = r)
Pg/(hit = 1|producttype = p, rating = r)

= Pg(hit = 1|producttype = p, rating = r)



Formalizing interventions: the intuition of “do”

P(hit = 1|do(days) = d)
= Pg/(hit = 1|days = d), by definition

p,r
Pg/(producttype = p,rating = r|days = d), by total probability
= Z Pg:(hit = 1|days = d, producttype = p, rating = r)
p,r
Pg:(producttype = p,rating = r), by substitution
= Z P (hit = 1|days = d, producttype = p,rating = r)
p,r
P (producttype = p,rating = r), our adjustment formula

References: [PGJ16], [Pro]



Causal hit rate

Typical quantity of interest: average treatment effect or ATE

P(hit = 1|days = d) P(hit = 1|do(days = d))
hit prob
days days
0 0.532706 0 0.565343

1 0.442064 1 0.397330
2 0.330519 2 0.240322
3 0.174006 3 0.215639




Causal hit rate, 1l

Compute relative average treatment effect for different values of days:

Pg(hit = 1|days = d) — Pg(hit = 1|days = d + 1)
Pg(hit = 1|days = d)
Pg(hit = 1|do(days = d)) — Pg(hit = 1|do(days = d + 1))
Pg(hit = 1|do(days = d))
Pg:(hit = 1|days = d) — Pg/(hit = 1|days = d + 1)
PG/(hit = l\days = d)

relative-ateg =

relative-ateg: =

from-d to-d ate-given ate-do

0 1 0.170153 0.297187
1 2 0.252329 0.395158
2 3 0.473538 0.102707




Judea Pearl’s Rules of Causality

Let X, Y, Z and W be arbitrary disjoint sets of nodes in a DAG G. Let Gx be the
graph obtained by removing all arrows pointing into (nodes of) X. Denote by Gy the
graph obtained by removing all arrows pointing out of X. If, e.g. we remove arrows
pointing out of X and into Z, we the resulting graph is denoted by G,>

Rule 1: Insertion / deletion of observations

P(y|do(x), z, w) = P(y|do(x), w) if (Y 1L Z|X, W)e,
Rule 2: Action / observation exchange
P(y|do(x),do(z), w) = P(y|do(x), z, w) if (Y 1L Z|X, W)GY,
Rule 3: Insertion / deletion of actions
P(y|do(x),do(z), w) = P(y|do(x),w) if (Y 1L Z|X, W)GW’

where Z(W) is the set of Z-nodes that are not ancestors of any W-node in Gy.



Special cases of the causal rules

By judicious setting of sets of nodes to be empty, we obtain some useful corollaries of
the causal rules.

Rule 1': Insertion / deletion of observations, with W = ()
P(y|do(x),z) = P(y|do(x)) if (Y 1L Z\X)c7
Rule 2': Action / observation exchange, with X = ()
P(yldo(z), w) = P(y|z, w) if (Y IL Z|W)g,
Rule 3': Insertion / deletion of actions, with X, W = ()

P(y|do(z)) = P(y) if (Y 1L Z)¢,



Special cases of the causal rules

By judicious setting of sets of nodes to be empty, we obtain some useful corollaries of
the causal rules.

Rule 1': Insertion / deletion of observations, with W = ()
P(y|do(x),z) = P(y|do(x)) if (Y 1L Z\X)c7
Rule 2': Action / observation exchange, with X = ()
P(yldo(z), w) = P(y|z, w) if (Y IL Z|W)g,
Rule 3': Insertion / deletion of actions, with X, W = ()
P(y|do(z)) = P(y) if (Y 1L Z)¢,

— d-separation + causal rules = adjustment formulas: do queries as normal queries.
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