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Why causality?
To avoid spurious correlations

Tyler Vigen’s Spurious Correlations

https://www.tylervigen.com/spurious-correlations


Why causality?
To estimate effects of interventions

Article on PubMed

https://pubmed.ncbi.nlm.nih.gov/29897866/


Interventions and causality

Ideal: Intervention + Multiverse → Causality

Examples:

• Medical treatment (e.g. kidney stone treatment)

• Social outcomes (e.g. university admissions)

• Business outcomes (e.g. click-through rate, hit rate)

In-practice:

• Correlation: approximate multiverse by comparing intervention at t to result at
t − 1

• Random population: approximate multiverse by splitting sample well

• A / B testing: random populations A / B + intervention in one

https://en.wikipedia.org/wiki/Multiverse
https://en.wikipedia.org/wiki/Simpson%27s_paradox#Kidney_stone_treatment
https://en.wikipedia.org/wiki/Simpson%27s_paradox#UC_Berkeley_gender_bias
https://en.wikipedia.org/wiki/Click-through_rate


Formalizing interventions: the intuition of “do” for hit-rate

For business application, quantity of interest is effect of intervention / counterfactual

Not P(hit = 1|days = d)

G =

but P(hit = 1|do(days = d))

G ′ = Gdays =

product_type

days

rating

hit

 



Causality vs correlation mean different business decisions

Compute relative average treatment effect for different values of days:

relative-ateG =
PG (hit = 1|days = d)− PG (hit = 1|days = d + 1)

PG (hit = 1|days = d)

relative-ateG ′ =
PG (hit = 1|do(days = d))− PG (hit = 1|do(days = d + 1))

PG (hit = 1|do(days = d))

=
PG ′(hit = 1|days = d)− PG ′(hit = 1|days = d + 1)

PG ′(hit = 1|days = d)

from-d to-d ate-given ate-do

0 1 0.170153 0.297187
1 2 0.252329 0.395158
2 3 0.473538 0.102707



Reality check and wrap-up

• The do-calculus models interventions better than correlation / conditionals, but
what about model misspecification?

• Causal reasoning mitigates risk of outsourcing thinking to correlations



Appendices

For more context and code samples, see the risk-ai-workshop repo and slides.

https://github.com/munichpavel/risk-ai-workshop/
https://github.com/munichpavel/risk-ai-workshop/releases/tag/v2022.1.2


Formalizing interventions: the intuition of “do”
First, find quantities unchanged between G and G ′ = Gdays

product_type

days

rating

hit

 

PG ′(producttype = p, rating = r)

= PG (producttype = p, rating = r) (1)

PG ′(hit = 1|producttype = p, rating = r)

= PG (hit = 1|producttype = p, rating = r) (2)



Formalizing interventions: the intuition of “do”

product_type

days

rating

hit

 

P(hit = 1|do(days) = d)

= PG ′(hit = 1|days = d), by definition

=
∑
p,r

PG ′(hit = 1|days = d ,producttype = p, rating = r)

PG ′(producttype = p, rating = r |days = d), by total probability

=
∑
p,r

PG ′(hit = 1|days = d ,producttype = p, rating = r)

PG ′(producttype = p, rating = r), by substitution

=
∑
p,r

PG (hit = 1|days = d ,producttype = p, rating = r)

PG (producttype = p, rating = r), our adjustment formula

References: Judea Pearl et. al, Causal Inference in Statistics, Christopher Prohm,
Causality and Function Approximation

http://bayes.cs.ucla.edu/PRIMER/
https://cprohm.de/article/causality-and-function-approximations.html/
https://cprohm.de/article/causality-and-function-approximations.html/


Judea Pearl’s Rules of Causality
Let X , Y , Z and W be arbitrary disjoint sets of nodes in a DAG G . Let GX be the
graph obtained by removing all arrows pointing into (nodes of) X . Denote by GX the
graph obtained by removing all arrows pointing out of X . If, e.g. we remove arrows
pointing out of X and into Z , we the resulting graph is denoted by GXZ
Rule 1: Insertion / deletion of observations

P(y |do(x), z ,w) = P(y |do(x),w) if (Y ⊥⊥ Z |X ,W )GX

Rule 2: Action / observation exchange

P(y |do(x), do(z),w) = P(y |do(x), z ,w) if (Y ⊥⊥ Z |X ,W )GXZ

Rule 3: Insertion / deletion of actions

P(y |do(x), do(z),w) = P(y |do(x),w) if (Y ⊥⊥ Z |X ,W )G
XZ(W )

,

where Z (W ) is the set of Z -nodes that are not ancestors of any W -node in GX .



Special cases of the causal rules

By judicious setting of sets of nodes to be empty, we obtain some useful corollaries of
the causal rules.

Rule 1’: Insertion / deletion of observations, with W = ∅

P(y |do(x), z) = P(y |do(x)) if (Y ⊥⊥ Z |X )GX

Rule 2’: Action / observation exchange, with X = ∅

P(y |do(z),w) = P(y |z ,w) if (Y ⊥⊥ Z |W )GZ

Rule 3’: Insertion / deletion of actions, with X ,W = ∅

P(y |do(z)) = P(y) if (Y ⊥⊥ Z )GZ

=⇒ d-separation + causal rules = adjustment formulas: do queries as normal queries.
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Causality vs correlation mean different business decisions

Quantity of interest: average treatment effect or ATE

P(hit = 1|days = d)

hit
days

0 0.532706
1 0.442064
2 0.330519
3 0.174006

P(hit = 1|do(days = d))

prob
days

0 0.565343
1 0.397330
2 0.240322
3 0.215639


