Correlation, Causality and the do-calculus

Dr. Paul Larsen

June 7, 2022

Why causality?

To avoid spurious correlations

Tyler Vigen's Spurious Correlations

Why causality?

To estimate effects of interventions

Article on PubMed

Interventions and causality

Ideal: Intervention + Multiverse \rightarrow Causality

Examples:

- Medical treatment (e.g. kidney stone treatment)
- Social outcomes (e.g. university admissions)
- Business outcomes (e.g. click-through rate, hit rate)

In-practice:

- ullet Correlation: approximate multiverse by comparing intervention at t to result at t-1
- Random population: approximate multiverse by splitting sample well
- A / B testing: random populations A / B + intervention in one

Formalizing interventions: the intuition of "do" for hit-rate

For business application, quantity of interest is effect of intervention / counterfactual Not P(hit = 1|days = d) but P(hit = 1|do(days = d))

Causality vs correlation mean different business decisions

Compute relative average treatment effect for different values of ${
m days}$:

$$\begin{split} \operatorname{relative-ate}_{G} &= \frac{P_{G}(\operatorname{hit} = 1|\operatorname{days} = d) - P_{G}(\operatorname{hit} = 1|\operatorname{days} = d + 1)}{P_{G}(\operatorname{hit} = 1|\operatorname{days} = d)} \\ \operatorname{relative-ate}_{G'} &= \frac{P_{G}(\operatorname{hit} = 1|\operatorname{do}(\operatorname{days} = d)) - P_{G}(\operatorname{hit} = 1|\operatorname{do}(\operatorname{days} = d + 1))}{P_{G}(\operatorname{hit} = 1|\operatorname{do}(\operatorname{days} = d))} \\ &= \frac{P_{G'}(\operatorname{hit} = 1|\operatorname{days} = d) - P_{G'}(\operatorname{hit} = 1|\operatorname{days} = d + 1)}{P_{G'}(\operatorname{hit} = 1|\operatorname{days} = d)} \end{split}$$

from-d	to-d	ate-given	ate-do
0	1	0.170153	0.297187
1	2	0.252329	0.395158
2	3	0.473538	0.102707

Reality check and wrap-up

- The do-calculus models interventions better than correlation / conditionals, but what about model misspecification?
- Causal reasoning mitigates risk of outsourcing thinking to correlations

Appendices

For more context and code samples, see the risk-ai-workshop repo and slides.

Formalizing interventions: the intuition of "do"

First, find quantities unchanged between G and $\mathit{G}' = \mathit{G}_{\underline{\mathrm{days}}}$

$$P_{G'}(\text{producttype} = p, \text{rating} = r)$$

$$= P_{G}(\text{producttype} = p, \text{rating} = r)$$

$$= P_{G'}(\text{hit} = 1|\text{producttype} = p, \text{rating} = r)$$

$$= P_{G}(\text{hit} = 1|\text{producttype} = p, \text{rating} = r)$$
(2)

Formalizing interventions: the intuition of "do"

$$P(\text{hit} = 1|\text{do}(\text{days}) = d)$$
 $= P_{G'}(\text{hit} = 1|\text{days} = d), \text{ by definition}$
 $= \sum P_{G'}(\text{hit} = 1|\text{days} = d, \text{producttype} = p, \text{rating} = r)$

$$P_{G'}(\text{producttype} = p, \text{rating} = r|\text{days} = d), \text{ by total probability}$$

$$= \sum P_{G'}(\mathrm{hit} = 1 | \mathrm{days} = d, \mathrm{producttype} = p, \mathrm{rating} = r)$$

$$P_{G'}(\text{producttype} = p, \text{rating} = r), \text{ by substitution}$$

$$= \sum P_G(\mathrm{hit} = 1|\mathrm{days} = d, \mathrm{producttype} = p, \mathrm{rating} = r)$$

 $P_G(\text{producttype} = p, \text{rating} = r), \text{ our } adjustment \text{ formula}$

References: Judea Pearl et. al, Causal Inference in Statistics, Christopher Prohm, Causality and Function Approximation

product type

rating

Judea Pearl's Rules of Causality

Let X, Y, Z and W be arbitrary disjoint sets of nodes in a DAG G. Let G_X be the graph obtained by removing all arrows pointing into (nodes of) X. Denote by $G_{\overline{Y}}$ the graph obtained by removing all arrows pointing out of X. If, e.g. we remove arrows pointing out of X and into Z, we the resulting graph is denoted by G_{XZ} Rule 1: Insertion / deletion of observations

$$P(y|\text{do}(x),z,w) = P(y|\text{do}(x),w) \text{ if } (Y \perp \!\!\!\perp Z|X,W)_{G_{\overline{X}}}$$

Rule 2: Action / observation exchange

$$P(y|do(x),do(z),w) = P(y|do(x),z,w) \text{ if } (Y \perp \!\!\!\perp Z|X,W)_{G_{\overline{X}Z}}$$

Rule 3: Insertion / deletion of actions

$$P(y|\mathrm{do}(x),\mathrm{do}(z),w)=P(y|\mathrm{do}(x),w) \text{ if } (Y\perp\!\!\!\perp Z|X,W)_{G_{\overline{XZ/W}}},$$

where Z(W) is the set of Z-nodes that are not ancestors of any W-node in G_X .

Special cases of the causal rules

By judicious setting of sets of nodes to be empty, we obtain some useful corollaries of the causal rules.

Rule 1': Insertion / deletion of observations, with $W = \emptyset$

$$P(y|do(x),z) = P(y|do(x)) \text{ if } (Y \perp \!\!\!\perp Z|X)_{G_{\overline{X}}}$$

Rule 2': Action / observation exchange, with $X = \emptyset$

$$P(y|do(z), w) = P(y|z, w) \text{ if } (Y \perp \!\!\!\perp Z|W)_{G_{\underline{Z}}}$$

Rule 3': Insertion / deletion of actions, with $X, W = \emptyset$

$$P(y|do(z)) = P(y)$$
 if $(Y \perp \!\!\! \perp Z)_{G_{\overline{z}}}$

Special cases of the causal rules

By judicious setting of sets of nodes to be empty, we obtain some useful corollaries of the causal rules.

Rule 1': Insertion / deletion of observations, with $W = \emptyset$

$$P(y|do(x),z) = P(y|do(x)) \text{ if } (Y \perp \!\!\!\perp Z|X)_{G_{\overline{X}}}$$

Rule 2': Action / observation exchange, with $X = \emptyset$

$$P(y|do(z), w) = P(y|z, w) \text{ if } (Y \perp \!\!\!\perp Z|W)_{G_{\underline{Z}}}$$

Rule 3': Insertion / deletion of actions, with $X, W = \emptyset$

$$P(y|do(z)) = P(y) \text{ if } (Y \perp \!\!\!\perp Z)_{G_{\overline{Z}}}$$

 \implies d-separation + causal rules = adjustment formulas: do queries as normal queries.

Causality vs correlation mean different business decisions

Quantity of interest: average treatment effect or ATE

$$P(\text{hit} = 1|\text{days} = d)$$

$$P(\mathrm{hit}=1|\mathrm{do}(\mathrm{days}=d))$$

	hit
days	
0	0.532706
1	0.442064
2	0.330519
3	0.174006

	prob
days	
0	0.565343
1	0.397330
2	0.240322
3	0.215639